

Quantitative benefit-risk analysis based on linked PKPD and health outcome modelling

Professor Dyfrig Hughes

Centre for Health Economics & Medicines Evaluation

North West Hub

Health outcome modelling

- Explicit framework for considering:
 - Long-term outcomes (length of life, quality of life)
 - Patient preferences
 - Value of additional information
- Preferred approach to Health Technology Assessment (e.g. NICE)
- Compatible with economic outcomes

Cost per Quality-Adjusted Life-Years (QALYs)

POINT/COUNTERPOINT

Current Assessment of Risk–Benefit by Regulators: Is It Time to Introduce Decision Analyses?

DA Hughes¹, AM Bayoumi² and M Pirmohamed³

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 82 NUMBER 2 | AUGUST 2007

Assessing A Structured, Quantitative Health Outcomes Approach To Drug Risk-Benefit Analysis

Using a health outcomes model to assess drug safety and benefits together could promote consistency and comparability across products and diseases.

by Louis P. Garrison Jr., Adrian Towse, and Brian W. Bresnahan

ABSTRACT: Regulatory authorities make difficult risk-benefit decisions when approving new drugs. Food and Drug Administration (FDA) advisory committees and reviewers must consider a complex body of evidence, including efficacy and safety results of trials, disease epidemiology, potential side effects, and patients' needs. However, this menu of information is not usually presented in a consistent and integrated framework. The members of an FDA review panel vote with some unobserved, implicit weighting of the evidence. This paper argues that outcomes research tools for modeling long-term health outcomes, measuring health preferences, and establishing the value of additional information could provide a more structured, transparent, and quantitative process of assessing risk-benefit balance. [Health Affairs 26, no. 3 (2007): 684–695; 10.1377/hlthaff.26.3.684]

Case study 1: Clopidogrel

nature publishing group

ARTICLES

See COMMENTARY page 769

A Risk–Benefit Assessment of Prasugrel, Clopidogrel, and Genotype-Guided Therapy in Patients Undergoing Percutaneous Coronary Intervention

GF Guzauskas^{1,2}, DA Hughes³, SM Bradley⁴ and DL Veenstra^{1,2,5}

- Clopidogrel with aspirin is the standard of care to reduce the risk of thrombotic events after percutaneous coronary intervention (PCI)
- Prasugrel associated with significantly lower rates of thrombotic events as compared with clopidogrel; but has a higher risk of major bleeding
- Clopidogrel-treated patients with reducedfunction CYP2C19 genetic variants have higher risk of thrombotic events vs patients without these variants

Results

- Prasugrel demonstrated little difference in net benefit as compared with clopidogrel +0.02 QALYs; (95% CR, -0.23 to 0.21)
- The genotype-guided strategy had
 - 93% probability of greater net benefit as compared with clopidogrel (+0.05 QALYs; 95% CR, -0.02 to 0.11)
 - 66% probability of greater net benefit as compared with prasugrel (+0.03 QALYs; 95% CR, -0.13 to 0.24)

QALY paradigm

- Years of life weighted by quality of life
- QoL based on utilities, which are preference-based outcomes
 - Respondents select length of time (t) in full health that they regard as equivalent to 10 years in health state X
 - -Utility for health state X = t/10

Quality-Adjusted Life-Years (QALYs)

Case study 2: NOACs

ARTICLES

Comparative Effectiveness of Dabigatran, Rivaroxaban, Apixaban, and Warfarin in the Management of Patients With Nonvalvular Atrial Fibrillation

J Pink¹, M Pirmohamed² and DA Hughes¹

Received 21 September 2012; accepted 1 April 2013; advance online publication 5 June 2013. doi:10.1038/clpt.2013.83

- Dabigatran, rivaroxaban and apixaban
 - Three new oral anticoagulants
 - Evidence on comparative efficacy to warfarin demonstrated in the RE-LY, ROCKET-AF and ARISTOTLE trials
- Primary outcome of stroke or systemic embolism
 - superiority of dabigatran (1.11% v 1.71% /year;
 p<0.001) and
 - apixaban (1.27% v 1.60% /year; p=0.01) and
 - non-inferiority of rivaroxaban (2.1% v 2.4% /year; p=0.12)

Adverse events

 Rates of major bleeding were not significantly different between dabigatran 150mg and warfarin or between rivaroxaban and warfarin, but apixaban was associated with a lower risk of major bleeding (2.13% v 3.09% per year; p<0.001)

Quantitative indirect BRA

• Adjusted, indirect comparison

 to assess relative benefits and harms, and help guide treatment selection

- Discrete event simulation
 - models risks of occurrence of clinical events and outcomes from patients' characteristics which are updated according to time and event history

Methods

- Stroke risk profile of the US atrial fibrillation population, in terms of CHADS₂ scores
- Bucher method of adjustment for indirect comparisons among trials
- Probabilities of treatment discontinuation
- Utility scores from the US Medical Expenditure Panel Survey of several thousand patients

Table 1 Lifetime estimates of event rates, net health benefits, and incremental differences vs. comparator, derived from probabilistic sensitivity analysis

Referent	Mean estimate (95% central range)	Mean difference (95% central range)	Comparator
Quality-adjuste	d life-years		
Warfarin	5.636 (5.546, 5.733)	-0.095 (-0.242, 0.052)	Rivaroxaban
Rivaroxaban	5.731 (5.631, 5.834)	-0.011 (-0.164, 0.144)	Dabigatran
Dabigatran	5.742 (5.652, 5.854)	-0.024 (-0.174, 0.130)	Apixaban
Apixaban	5.766 (5.652, 5.881)	0.130 (-0.029, 0.265)	Warfarin
Life-years			
Warfarin	9.638 (9.498, 9.737)	-0.092 (-0.286, 0.120)	Rivaroxaban
Rivaroxaban	9.729 (9.579, 9.865)	-0.034 (-0.241, 0.172)	Dabigatran
Dabigatran	9.763 (9.604, 9.893)	-0.045 (-0.254, 0.147)	Apixaban
Apixaban	9.808 (9.655, 9.946)	0.171 (-0.031, 0.362)	Warfarin
Stroke or syster	nic embolism		
Warfarin	0.303 (0.264, 0.339)	0.020 (-0.033, 0.074)	Rivaroxaban
Rivaroxaban	0.283 (0.238, 0.319)	0.031 (-0.029, 0.083)	Dabigatran
Dabigatran	0.251 (0.213, 0.301)	0.050 (-0.001, 0.099)	Apixaban
Apixaban	0.201 (0.169, 0.254)	-0.102 (-0.154, -0.050)	Warfarin

Referent	Mean estimate (95% central range)	Mean difference (95% central range)	Comparator	
Transient ischei	mic attack			
Warfarin	0.123 (0.091, 0.158)	0.031 (-0.019, 0.084)	Rivaroxaban	
Rivaroxaban	0.092 (0.070, 0.123)	-0.006 (-0.057, 0.046)	Dabigatran	
Dabigatran	0.097 (0.069, 0.128)	0.020 (-0.034, 0.069)	Apixaban	
Apixaban	0.077 (0.055, 0.104)	-0.046 (-0.093, 0.008)	Warfarin	
Intracranial hemorrhage				
Warfarin	0.073 (0.064, 0.081)	0.014 (-0.002, 0.026)	Rivaroxaban	
Rivaroxaban	0.059 (0.052, 0.066)	0.018 (0.000, 0.025)	Dabigatran	
Dabigatran	0.040 (0.035, 0.047)	-0.002 (-0.015, 0.014)	Apixaban	
Apixaban	0.042 (0.033, 0.047)	-0.031 (-0.046, -0.013)	Warfarin	
Major bleed (including intracranial hemorrhage)				
Warfarin	0.307 (0.262, 0.347)	-0.021 (-0.076, 0.036)	Rivaroxaban	
Rivaroxaban	0.328 (0.283, 0.374)	0.017 (-0.037, 0.069)	Dabigatran	
Dabigatran	0.311 (0.274, 0.363)	0.069 (0.014, 0.115)	Apixaban	
Apixaban	0.242 (0.205, 0.278)	-0.065 (-0.116, -0.010)	Warfarin	

Probabilities of treatment with highest net benefit by patient subgroup

Main findings

- Apixaban achieved highest net benefit, followed by dabigatran, rivaroxaban then warfarin
- No subgroup in which the probability of apixaban being the most effective is below 50%, and none where the probability of warfarin being the most effective is above 5%

Case study 3: PGx warfarin

- Variability in response to warfarin can be partly explained by genetic polymorphisms in

 CYP2C9, VKORC1
- People with variant alleles are at an increased risk of over-anticoagulation and bleeding
- Dosing algorithms based on PGx may result in better INR control, and hence better clinical outcomes
- No RCTs comparing PGx-warfarin with NOACs
- Multiple dosing algorithms possible

Simulation structure

- Population PKPD model of warfarin used to predict time below, in and above INR range based on a range of algorithms (NONMEM)
- Data from a systematic review used to link time in range to clinical endpoints
- Health outcome model used to extrapolate to a lifetime horizon and compare different treatments in terms of QALYs accrued
 - Based on discrete event simulation described earlier

Population PKPD model

- From Hamberg et al, CPT 2010;87:727-34 which predicts INR measurements based on dose, age and genetic information
- Patient characteristics based on those of the UK atrial fibrillation population
- Model allows for explicit incorporation of nonadherence

Dosing algorithms

- Loading phase
 - To achieve correct INR range as quickly as possible without over anticoagulating
- Predicted maintenance dose
 - To predict the most likely dose to maintain a patient in range in the long term
- Maintenance phase
 - Further dose adjustments are made based on INR at clinic visits
- Genetic information can be used in each stage

Algorithm selection - Example

- Loading dose: 10, 10, 5mg (days 1,2,3)
- Predicted maintenance dose: IWPC algorithms
 - A clinical algorithm based on age, height, weight, ethnicity, use of amiodarone and enzyme inducers
 - A pharmacogenetic algorithm which uses all these variables and genetic information
- Doses adjusted with the Fennerty algorithm

Population PKPD results – INR

Open symbols (dashed lines) clinical algorithms Filled symbols (solid lines) pharmacogenetic algorithm

Results

	Life extension (months)	QALYs (95% CR)
PGx warfarin	0.003	0.0031 (0.1649, 0.1327)
Rivaroxaban	1.11	0.0957 (-0.0510, 0.2431)
Apixaban	2.06	0.1298 (-0.0290, 0.2638)
Dabigatran	1.47	0.1065 (-0.0493 <i>,</i> 0.2489)

All compared with warfarin dosed according to clinical algorithm

Sub-group analysis

Probability of each treatment accruing the largest number of QALYs

Discussion (1)

- QALYs may be considered as a measure of net health benefit
 - Derived from *patient* valuation of benefits and harms
- Health outcome modelling allows explicit consideration of treatment consequences
- PKPD model outputs serving as HOM inputs has utility in:
 - Early estimation of balance of benefits & harms
 - Identification of sub-populations with favourable benefit-risk profile
 - Assessing inter-patient variability and protocol deviations
- Natural extension to model-based drug development

Discussion (2)

- Linking with pharmacoeconomic models (PKPDPE)
- PKPDPE-based clinical trial simulation to inform protocol design
 - Value of information analysis to quantify the value of future research in reducing parameter uncertainty
- Early estimates of cost-effectiveness
 - Inform stop/go decisions
 - Price determination (value-based pricing)

Economic Evaluations During Early (Phase II) Drug Development A Role for Clinical Trial Simulations?

Dyfrig A Hughes and Tom Walley

Prescribing Research Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

Mechanism-Based Approach to the Economic Evaluation of Pharmaceuticals Pharmacokinetic/Pharmacodynamic/Pharmacoeconomic Analysis of Rituximab for Follicular Lymphoma

Joshua Pink,¹ Steven Lane² and Dyfrig A. Hughes¹

- Centre for Health Economics and Medicines Evaluation, Institute of Medical and Social Care Research, Bangor University, Bangor, Wales
- 2 Department of Biostatistics, University of Liverpool, Liverpool, England

Lewis Sheiner Prize, PAGE 2011, Athens

Combining drug-disease and economic modelling to inform drug development decisions

Bill Poland and Russell Wada

A natural extension to MBDD

Disease model

- Biology
- Biomarker / outcome relationship
- Natural progression

Drug model

- Pharmacokinetics
 Pharmacodynamics
 Conversion offects
- Co-variate effects

Population model

- Patient demographics
- Drop-outs
- Adherence

Health outcomes modelling

- Health state utilities
- Benefit-risk assessment
- Economic appraisal

Milligan et al, CPT 2013 doi:10.1038/clpt.2013.54

Acknowledgements

- MRC funding
- Munir Pirmohamed, Steven Lane (University of Liverpool)
- Greg Guzauskas, Steve Bradley, Dave Veenstra (University of Washington, Seattle)
- Joshua Pink (formerly Bangor University)

Your own health state today	Your own health state today
By placing a tick in one box in each group below, please indicate which statement best describes your own health state today. Do not tick more than one box in each group. Mobility I have no problems in walking about I have some problems in walking about I am confined to bed Self-care I have no problems with self-care I have some problems washing and dressing myself I am unable to wash and dress myself I muse to wash and dress myself I have no problems with performing my usual activities I have no problems with performing my usual activities I have some problems with performing my usual activities I have some problems with performing my usual activities I have some problems with performing my usual activities I am unable to perform my usual activities	To help people say how good or bad a health state is, we have drawn a scale (rather like a thermometer) on which the best state you can imagine is marked 100 and the worst state you can imagine is marked 0.Best imaginable health stateWe would like you to indicate on this scale how good or bad your own health is today, in your opinion. Please do this by drawing a line from the box below to whichever point on the scale indicates how good or bad your health state is.Best imaginable health stateYour own health state is.100 900
Pain/discomfort I have no pain or discomfort I have moderate pain or discomfort I have extreme pain or discomfort	
Anxiety/depression I am not anxious or depressed I am moderately anxious or depressed I am extremely anxious or depressed	Uverst imaginable health state

EQ-5D preference weights

- Health state:
 - Mobility 1
 - Self-care 1
 - Usual activities 2
 - Pain/ Discomfort 2
 - Anxiety / Depression 3

- Health utility 0.255